skip to main content


Search for: All records

Creators/Authors contains: "Trapp, Robert J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A novel, multi‐scale climate modeling approach is used to show the potential for increases in future tornado intensity due to anthropogenic climate change. Historical warm‐ and cool‐season (WARM and COOL) tornado events are virtually placed in a globally warmed future via the “pseudo‐global warming” method. As hypothesized based on meteorological arguments, the tornadic‐storm and associated vortex of the COOL event experiences consistent and robust increases in intensity in an ensemble of imposed climate‐change experiments. The tornadic‐storm and associated vortex of the WARM event experiences increases in intensity in some of the experiments, but the response is neither consistent nor robust, and is overall weaker than in the COOL event. An examination of environmental parameters provides further support of the disproportionately stronger response in the cool‐season event. These results have implications on future tornadoes forming outside of climatologically favored seasons.

     
    more » « less
  2. null (Ed.)
    Abstract The current study identifies and quantifies various mechanisms of entrainment, and their diluting effects, in the developing and mature stages of a simulated supercell thunderstorm. The two stages, differentiated by the lack or presence of a rotating updraft, are shown to entrain air by different, but related mechanisms that result from the strong vertical wind shear of the environment. The greatest entrainment rates in the developing stage result from the asymmetric overturning of large eddies near cloud top on the down-shear side. These rates are greater than those published in the literature for cumuli developing in environments lacking strong shear. Although the entrainment rate increases exponentially in time throughout the developing stage, successive cloud turrets help to replenish some of the lost buoyancy and condensate, allowing the nascent storm to develop further. During the mature stage, the greatest entrainment rates occur via “ribbons” of horizontal vorticity wrapping around the rotating updraft that ascend in time. The smaller width of the ribbons in comparison to the wider storm core limits their dilutive effects. Passive tracers placed in the low-level air ingested by the mature storm indicate that on average 20% of the core contains some undiluted air ingested from below the storm base, unaffected by any entrainment mechanism. 
    more » « less
  3. null (Ed.)
    Abstract The Flexible Array of Radars and Mesonets (FARM) Facility is an extensive mobile/quickly-deployable (MQD) multiple-Doppler radar and in-situ instrumentation network. The FARM includes four radars: two 3-cm dual-polarization, dual-frequency (DPDF), Doppler On Wheels DOW6/DOW7, the Rapid-Scan DOW (RSDOW), and a quickly-deployable (QD) DPDF 5-cm COW C-band On Wheels (COW). The FARM includes 3 mobile mesonet (MM) vehicles with 3.5-m masts, an array of rugged QD weather stations (PODNET), QD weather stations deployed on infrastructure such as light/power poles (POLENET), four disdrometers, six MQD upper air sounding systems and a Mobile Operations and Repair Center (MORC). The FARM serves a wide variety of research/educational uses. Components have deployed to >30 projects during 1995-2020 in the USA, Europe, and South America, obtaining pioneering observations of a myriad of small spatial and temporal scale phenomena including tornadoes, hurricanes, lake-effect snow storms, aircraft-affecting turbulence, convection initiation, microbursts, intense precipitation, boundary-layer structures and evolution, airborne hazardous substances, coastal storms, wildfires and wildfire suppression efforts, weather modification effects, and mountain/alpine winds and precipitation. The radars and other FARM systems support innovative educational efforts, deploying >40 times to universities/colleges, providing hands-on access to cutting-edge instrumentation for their students. The FARM provides integrated multiple radar, mesonet, sounding, and related capabilities enabling diverse and robust coordinated sampling of three-dimensional vector winds, precipitation, and thermodynamics increasingly central to a wide range of mesoscale research. Planned innovations include S-band On Wheels NETwork (SOWNET) and Bistatic Adaptable Radar Network (BARN), offering more qualitative improvements to the field project observational paradigm, providing broad, flexible, and inexpensive 10-cm radar coverage and vector windfield measurements. 
    more » « less
  4. null (Ed.)
    Abstract During the Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations-Cloud, Aerosol, and Complex Terrain Interactions (RELAMPAGO-CACTI) field experiments in 2018–19, an unprecedented number of balloon-borne soundings were collected in Argentina. Radiosondes were launched from both fixed and mobile platforms, yielding 2712 soundings during the period 15 October 2018–30 April 2019. Approximately 20% of these soundings were collected by highly mobile platforms, strategically positioned for each intensive observing period, and launching approximately once per hour. The combination of fixed and mobile soundings capture both the overall conditions characterizing the RELAMPAGO-CACTI campaign, as well as the detailed evolution of environments supporting the initiation and upscale growth of deep convective storms, including some that produced hazardous hail and heavy rainfall. Episodes of frequent convection were characterized by sufficient quantities of moisture and instability for deep convection, along with deep-layer vertical wind shear supportive of organized or rotating storms. A total of 11 soundings showed most unstable convective available potential energy (MUCAPE) exceeding 6000 J kg −1 , comparable to the extreme instability observed in other parts of the world with intense deep convection. Parameters used to diagnose severe-storm potential showed that conditions were often favorable for supercells and severe hail, but not for tornadoes, primarily because of insufficient low-level wind shear. High-frequency soundings also revealed the structure and evolution of the boundary layer leading up to convection initiation, convectively generated cold pools, the South American low-level jet (SALLJ), and elevated nocturnal convection. This sounding dataset will enable improved understanding and prediction of convective storms and their surroundings in subtropical South America, as well as comparisons with other heavily studied regions such as the central United States that have not previously been possible. 
    more » « less
  5. null (Ed.)
  6. Orographic deep convection (DC) initiation and rapid evolution from supercells to mesoscale convective systems (MCS) are common near the Sierras de Cόrdoba, Argentina, which was the focal point of the Remote Sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign. This study used an idealized numerical model with elongated north-south terrain similar to that of the Sierras de Cόrdoba to address how variations in terrain height affected the environment and convective morphology. Simulations used a thermodynamic profile from a RELAMPAGO event that featured both supercell and MCS storm modes. Results revealed that DC initiated earlier in simulations with higher terrain, owing both to stronger upslope flows and standing mountain waves. All simulations resulted in supercell formation, with higher terrain supercells initiating closer to the terrain peak and moving slower off the terrain. Higher terrain simulations displayed increases in both low-level and deep-layer wind shear along the eastern slopes of the terrain that were related to the enhanced upslope flows, supporting stronger and wider supercell updrafts/downdrafts and a wider swath of heavy rainfall. Deeper and stronger cold pools from these wider and stronger higher terrain supercells led to surging outflow that reduced convective available potential energy accessible to deep convective updrafts, resulting in quicker supercell demise off the terrain. Lower terrain supercells moved quickly off the terrain, merged with weaker convective cells, and resulted in a quasi-organized MCS. These results demonstrate that terrain-induced flow modification may lead to substantial local variations in convective morphology. 
    more » « less
  7. Abstract On 10 November 2018, during the RELAMPAGO field campaign in Argentina, South America, a thunderstorm with supercell characteristics was observed by an array of mobile observing instruments, including three Doppler on Wheels radars. In contrast to the archetypal supercell described in the Glossary of Meteorology, the updraft rotation in this storm was rather short lived (~25 min), causing some initial doubt as to whether this indeed was a supercell. However, retrieved 3D winds from dual-Doppler radar scans were used to document a high spatial correspondence between midlevel vertical velocity and vertical vorticity in this storm, thus providing evidence to support the supercell categorization. Additional data collected within the RELAMPAGO domain revealed other storms with this behavior, which appears to be attributable in part to effects of the local terrain. Specifically, the IOP4 supercell and other short-duration supercell cases presented had storm motions that were nearly perpendicular to the long axis of the Sierras de Córdoba Mountains; a long-duration supercell case, on the other hand, had a storm motion nearly parallel to these mountains. Sounding observations as well as model simulations indicate that a mountain-perpendicular storm motion results in a relatively short storm residence time within the narrow zone of terrain-enhanced vertical wind shear. Such a motion and short residence time would limit the upward tilting, by the left-moving supercell updraft, of the storm-relative, antistreamwise horizontal vorticity associated with anabatic flow near complex terrain. 
    more » « less
  8. Abstract

    The pseudo‐global‐warming (PGW) methodology provides an efficient means to investigate the response of a weather or climate event under an imposed climate change signal. In the traditional PGW implementation, this signal is represented through climate‐change “deltas” constructed using monthly averages of global climate model (GCM) output over decadal or longer periods during the past and future. The implications of alternative formulations of such deltas were explored herein. Diurnally varying (DV) deltas were compared to the time‐constant (TC) deltas used in the traditional PGW implementation; this was done to test the potential effect of future changes in the diurnal cycles of temperature, humidity, and winds. Deltas created using 10‐year averages were compared to those using 30‐year averages, to examine the effects of the time‐averaging period in the delta construction. Finally, the common practice of additionally averaging across multiple GCMs to form a composite delta was also considered. Using simulations of three different historical convective storm events, it was shown that each of these PGW delta formulations results in differences in simulation metrics such as total accumulated rainfall, and convective intensity, but major and/or unambiguous differences were not always found. It is recommended that users of the PGW approach carefully consider all implications of delta formulation on their particular problem.

     
    more » « less
  9. Abstract

    Satellite- and ground-based radar observations have shown that the northern half of Argentina, South America, is a region susceptible to rapid upscale growth of deep moist convection into larger organized mesoscale convective systems (MCSs). In particular, the complex terrain of the Sierras de Córdoba is hypothesized to be vital to this upscale-growth process. A canonical orographic supercell-to-MCS transition case study was analyzed to determine the influence that complex terrain had on processes governing upscale convective growth. High-resolution numerical modeling experiments were conducted in which the terrain height of the Sierras de Córdoba was systematically modified by raising or lowering the elevation of terrain above 1000 m. The alteration of the terrain lead to both direct and indirect effects on storm morphology. A direct effect included terrain blocking of cold pools, whereas indirect effects included terrain-induced variations in pertinent storm environmental parameters (e.g., vertical wind shear, convective available potential energy). When the terrain was raised, low-level and deep-layer vertical wind shear increased, mixed-layer convective available potential energy decreased, deep moist convection initiated earlier, and cold pools were blocked and generally became stronger and deeper. The reverse occurred when the terrain was lowered, resulting in a weaker supercell that did not grow upscale into an MCS. The control simulation supercell displayed the deepest cold pool and correspondingly fastest transition from supercell to MCS, potentially revealing that the unique terrain configuration of the Sierras de Córdoba was supportive of the observed rapid upscale convective growth of this orographic supercell.

     
    more » « less
  10. null (Ed.)
    Abstract This article provides an overview of the experimental design, execution, education and public outreach, data collection, and initial scientific results from the Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign. RELAMPAGO was a major field campaign conducted in Córdoba and Mendoza provinces in Argentina, and western Rio Grande do Sul State in Brazil in 2018-2019 that involved more than 200 scientists and students from the US, Argentina, and Brazil. This campaign was motivated by the physical processes and societal impacts of deep convection that frequently initiates in this region, often along the complex terrain of the Sierras de Córdoba and Andes, and often grows rapidly upscale into dangerous storms that impact society. Observed storms during the experiment produced copious hail, intense flash flooding, extreme lightning flash rates and other unusual lightning phenomena, but few tornadoes. The 5 distinct scientific foci of RELAMPAGO: convection initiation, severe weather, upscale growth, hydrometeorology, and lightning and electrification are described, as are the deployment strategies to observe physical processes relevant to these foci. The campaign’s international cooperation, forecasting efforts, and mission planning strategies enabled a successful data collection effort. In addition, the legacy of RELAMPAGO in South America, including extensive multi-national education, public outreach, and social media data-gathering associated with the campaign, is summarized. 
    more » « less